Dans un récent article, publié dans Reviews of Modern Physics, Charley Presigny et Fabrizio de Vico Fallani (Inria) de l’équipe ARAMIS à l’Institut du Cerveau présentent un nouveau modèle mathématique pour décrypter l’organisation du cerveau et son fonctionnement dans le temps et l’espace.
Le cerveau, un système complexe multi-échelles
Le fonctionnement cérébral se développe simultanément sur des axes ou dimensions différents, à l’intérieur desquels existent plusieurs échelles. Dans l’axe temporel, le vieillissement se présente à l’échelle d’une vie, l’apprentissage à l’échelle des semaines ou mois, et le comportement à des échelles plus courtes de l’ordre de la milliseconde. L’axe spatial considère le cerveau soit dans son ensemble, soit par régions, voire par neurone. La troisième dimension est représentée par les interactions entre les neurones ou une région cérébrale, à l’échelle individuelle, de groupe ou de réseaux (topologie).
Modéliser la complexité des réseaux
Les interactions entre les différentes unités d’un système peuvent être de nature différente. Si nous prenons un exemple de la vie de tous les jours, comme les interactions sociales, cette diversité d’interactions est plutôt évidente. Deux personnes peuvent être en contact par différents moyens comme Facebook, les emails ou le téléphone, et leurs interactions peuvent suivre des dynamiques très variées. On peut échanger régulièrement avec quelqu’un sur Facebook ou Instagram et ne jamais lui avoir envoyer un mail. C’est de façon simplifiée le principe fondamental de la théorie des réseaux complexes multicouches, dont les chercheurs suggèrent aujourd’hui le potentiel pour la compréhension du cerveau humain.
Relier structure et fonction du cerveau
Une problématique clé en neuroscience est de comprendre comment l’organisation structurale et l’organisation fonctionnelle du cerveau sont reliées entre elles, et comment de ces associations naissent des capacités cérébrales complexes comme la perception, l’attention ou la cognition. Dans ce cadre, l’approche des réseaux multicouches représente un modèle intéressant pour améliorer notre compréhension du lien entre anatomie et fonction cérébrale.
L’IRM de diffusion permet de reconstruire les structures des réseaux de connectivité, tandis que l’IRM fonctionnelle fournit des informations sur l’activité cérébrale. Les résultats obtenus par plusieurs études révèlent de nouveaux motifs de connectivité entre la structure et l’activité cérébrale. Ainsi, lorsque deux régions sont anatomiquement connectées à une région commune, la probabilité qu’elles puissent communiquer entre elles au niveau fonctionnel augmente.
Apprentissage, les neurones ont besoin d'énergie
Afin de modéliser un mécanisme clé qu’est l’apprentissage, d’autres chercheurs ont développé un modèle réseau multicouche.
- La première contenait des réseaux dynamiques de neurones – représentant la plasticité cérébrale, c’est-à-dire la capacité de notre cerveau à remodeler ses connexions en fonction de nos expériences et nos apprentissages.
- La seconde était constituée de réseaux de cellules gliales, dont un des rôles est de fournir des ressources énergétiques aux neurones.
- La troisième représentait la connectivité entre les deux premières couches, qui représentait le transfert d’énergie des cellules gliales vers les neurones. Les résultats obtenus à partir de ce modèle ont montré que la régulation des apports énergétiques par les cellules gliales permet de changer la dynamique des neurones, en période d’apprentissage.
Le défi : modéliser la complexité du cerveau
La théorie des réseaux complexes multicouches représente une piste prometteuse pour décrypter l’organisation et la multiplicité des interactions à différentes échelles dans le cerveau. Il ouvre en particulier de nouvelles perspectives pour mieux comprendre et identifier les dysfonctionnements et modifications topologiques au cours des pathologies cérébrales.
Sources
Charley Presigny and Fabrizio De Vico Fallani. Multiscale modeling of brain network organization
Rev. Mod. Phys. 94, 031002 – Published 2 August 2022
L’équipe ARAMIS, dirigée par Ninon BURGOS & Olivier COLLIOT a pour objectif de construire des modèles numériques des maladies du cerveau, en particulier des pathologies neurodégénératives, à partir de bases de données multimodales issues de patients...
En savoir plus